On the nontrivial projection problem
نویسنده
چکیده
TheNontrivial Projection Problem asks whether every finite-dimensional normed space admits a well-bounded projection of non-trivial rank and corank or, equivalently, whether every centrally symmetric convex body (of arbitrary dimension) is approximately affinely equivalent to a direct product of two bodies of non-trivial dimension. We show that this is true “up to a logarithmic factor.”
منابع مشابه
Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
متن کامل$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملAdditivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملA Forward-Backward Projection Algorithm for Approximating of the Zero of the Sum of Two Operators
In this paper, a forward-backward projection algorithm is considered for finding zero points of the sum of two operators in Hilbert spaces. The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly monotone operator and a maximal monotone operator. We apply the result for solving the variational inequality problem, fixed po...
متن کاملProjections of Bouquet Graph with Two Cycles
In this paper we investigate the projections of bouquet graph B with two cycles. A projection of B is said to be trivial if only trivial embeddings are obtained from the projection. It is shown that, to cover all nontrivial projections of B, at least three embeddings of B are needed. We also show that a nontrivial projection of B is covered by one of some two embeddings if the image of each cyc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008